Chiral Propargyl Alcohols via the Enantioselective Addition of Terminal Di- and Triynes to Aldehydes

Erin R. Graham ${ }^{\dagger}$ and Rik R. Tykwinski ${ }^{*, \neq}$
${ }^{\dagger}$ Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
${ }^{\ddagger}$ Institut für Organische Chemie, Friedrich-Alexander-Universität, Erlangen-Nürnberg, Henkestrasse 42, D-91054 Erlangen, Germany

Supporting Information

Abstract

The enantioselective addition of di- and triynes to aldehydes is presented, including the first examples of an asymmetric triyne addition. Modification of the Carreira alkynylation protocol shows that addition of diynes and triynes to α-branched aldehydes can be complete in as little as 4 h , and these reactions give good yields and enantioselectivities (up to 98% ee) for di- and triynes tested (aryl, alkyl, and silyl). It is shown for two cases (20 and 24) that products of this asymmetric addition reaction can undergo further manipulation (desilylation and triazole formation) without affecting the enantiopurity.

INTRODUCTION

Hundreds of acetylenic natural products have been isolated, and many of these compounds feature a propargylic alcohol. ${ }^{1}$ The diversity of natural sources that produce such polyynols is impressive and includes plants, fungi, corals, sponges, and bacteria. Equally remarkable is the structural variation of the polyynol framework, and di-, tri-, tetra-, and pentaynols have been isolated to date. Finally, from this class of natural products, many members have been shown to be biologically active. ${ }^{2}$

Several examples are used to express these points. The diynes falcarindiol and panaxytriol (1 and 2, respectively, Figure 1), have both been isolated from species of Panax, ${ }^{3}$ a class of plants long used in traditional medicine. These compounds show a range of properties, including inhibitory effects against methicillinresistant strains of Staphylococcus aureus and the growth of B16 melanoma cells. ${ }^{4}$ A structurally similar C_{17} compound, virol B (3) is a toxic component found within water hemlock (Cicuta virosa). ${ }^{5}$ The unusual triyne natural product L-660,631 (4) is isolated from Actinomycetes fermentation broth ${ }^{6}$ and Microbispora, ${ }^{7}$ and it shows good in vitro activity against Candida albicans and dermatophytic fungi. ${ }^{8}$ Tetrayne minquartynoic acid 5 has been isolated from the bark of a plant (Minquartia guianensis) traditionally used as an anthelmintic in Ecuador. ${ }^{9}$ This polyyne is highly cytotoxic against 10 different tumor cell lines ${ }^{10}$ and shows anti-HIV properties. ${ }^{11}$ Finally, the pentayne glucoside 6 has been first isolated from Microglossa pyrifolia ${ }^{12 \mathrm{a}}$ and, most recently, along with its aglycone from Bidens pilosa. ${ }^{12 \mathrm{~b}}$ The aglycone of 6 shows highly potent antimalarial and antibacterial properties in vitro, as well as antimalarial activity in vivo, based on intravenous injection of the drug in mice infected with the Plasmodium berghei NK-65 strain. ${ }^{12 b}$

Traditionally, the most common method for incorporating an optically active propargylic alcohol moiety into a polyyne framework initiates with the creation of a propargylic alcohol building block with the desired stereochemistry. ${ }^{13}$ Through a generally

3R,8S-falcarindiol (1)
HO

$8 S$-virol B (3)

Figure 1. Examples of naturally occurring, optically active polyynes with a propargylic alcohol moiety.
cumbersome and often low yielding process of cross-coupling reactions, extension of the acetylenic backbone is then achieved. ${ }^{2 d}$ Because the chiral building block is incorporated rather early in

[^0]Scheme 1. Carreira (top) and Trost (bottom) Protocols for Enantioselective Propargylic Alcohol Synthesis

the synthesis, however, we saw this route as less efficient than a protocol in which the propargylic stereocenter is created late in the synthesis through asymmetric addition of an oligoyne to an aldehyde. Enantioselective methods are viable routes toward the asymmetric formation of chiral propargylic alcohols. ${ }^{13-15}$ For example, the Carreira alkynylation (Scheme 1) reaction using $\mathrm{Zn}(\mathrm{OTf})_{2}$ and N-methylephedrine works well with α-branched aldehydes, ${ }^{14,15}$ although it is less efficient with unsaturated aldehydes and those that lack α-branching. ${ }^{16}$ Since the initial report by Carreira, others have expanded on this process using variations of the N -methylephedrine ligand, ${ }^{17}$ although little work has been directed toward developing conditions directly applicable to di- or triynes. ${ }^{18}$

More recently, Trost and co-workers have shown that the asymmetric addition of diynes to a range of aldehydes can be carried out by using dimethylzinc in the presence of the catalyst (S, S)-ProPhenol, giving propargylic alcohols in good to excellent yield and enantiomeric excess (Scheme 1). ${ }^{19}$ The substrates that work best with the Trost protocol are α, β-unsaturated or non-α-branched aldehydes, i.e., the opposite trend to that observed by Carreira. To our knowledge, neither the Carreira nor the Trost protocols have been extended to the asymmetric addition of 1,3,5-hexatriynes to aldehydes. In this contribution, we outline our attempts to provide a general method for the asymmetric addition of diynes and triynes into aldehydes.

■ RESULTS AND DISCUSSION

Diynes and triynes used in this study have been formed via a Fritsch-Buttenberg-Wiechell (FBW) rearrangement (except for 11f), ${ }^{20-22}$ as schematically outlined in Scheme 2. Briefly, an acid chloride was subjected to a Friedel-Crafts acylation reaction with bis(trimethylsilyl)acetylene or -1,4-butadiyne in the presence of AlCl_{3} to produce a ketone $7 .{ }^{23}$ The resulting ketone was transformed to the corresponding dibromoolefin 8 using the conditions reported by Ramirez. ${ }^{24}$ The dibromoolefin was then subjected to a FBW rearrangement through reaction with n-BuLi to give either the corresponding di- or triyne (9 or $\mathbf{1 0}$) in good to excellent yield. The trimethylsilyl protecting group was removed via reaction of the di- or triyne (9 or $\mathbf{1 0}$) with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in a mixture of THF and MeOH. Due to their intrinsic instability, the resulting terminal polyyne ($\mathbf{1 1}$ or 12) was, following workup, carried on immediately to the asymmetric addition reaction.

Scheme 2. Schematic Outline of the Synthesis of Di- and Triynes 11 and 12

Initial synthetic explorations using the Carreira protocol for addition to aldehydes used t-Bu-phenyl end-capped diyne 11a as a substrate due to its stability in comparison to other diyne derivatives. The results are summarized in Table 1. When the reaction was performed with α-branched aldehydes, isobutyraldehyde and cyclohexanecarboxaldehyde, products 13a and 13b were formed in good yield and enantioselectivities of 90-95\%. When the more sterically hindered pivalaldehyde was used, the yield dropped significantly for 13c, but the enantioselectivity remained similar (90% ee) to that of $\mathbf{1 3} \mathbf{a}, \mathbf{b}$. On the other hand, when the reaction was done with the non- α-branched aldehyde propanal to give 13d, a significantly lower enantioselectivity resulted (64% ee), consistent with that previously observed for monoynes. ${ }^{15 b}$ Reactions of 11a with the α, β-unsaturated aldehydes acrolein or (E)-4-methylpent-2-enal were not successful, giving numerous byproducts and $<20 \%$ yield of the desired products as estimated by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Enantiomers of the N-methylephedrine ligand gave equal enantioselectivities with the opposite optical rotation (e.g., 13a and 13c, entries 1 and 2 , and 4 and 5), as expected. Finally, it is worth noting that the presence of water in the reaction media led to a dramatic lowering of the observed enantioselectivity of the reaction.

Typical reaction times required for completion of the test reactions were 72 h , which is less than ideal for reactions with terminal polyynes. A number of factors were thus examined toward optimizing the rate of the reaction using alkyne 11a and isobutyraldehyde (Table 2). Increasing the amount of $\mathrm{Zn}(\mathrm{OTf})_{2}$ from 1.2 to 1.6 equiv cut the reaction time nearly in half, while yields and enantioselectivities held steady. Further increasing the amount of $\mathrm{Zn}(\mathrm{OTf})_{2}$ to ca. 2.2 equiv had little effect on either yield or enantioselectivity (entries 3 and 4).

The effect of temperature was then explored. When heated to $40^{\circ} \mathrm{C}$, using 1.6 equiv of $\mathrm{Zn}(\mathrm{OTf})_{2}$, a yield of 89% was obtained with 92% ee in only 13 h (entry 5). When the reaction was performed at higher temperatures (entries 6-8), significant decreases in enantioselectivity were observed. The ideal reaction conditions were thus suggested as 1.6 equiv of $\mathrm{Zn}(\mathrm{OTf})_{2}$ with heating to $40^{\circ} \mathrm{C}$. Due to the instability of most terminal diynes, however, there was hesitation to use heat when exploring the scope of diynes for this reaction. Since heating the reaction

Table 1. Reaction of Diyne 11a with Various Aldehydes ${ }^{a}$

${ }^{a}$ Reaction conditions: Alkyne (1.2 equiv), $\mathrm{Zn}(\mathrm{OTf})_{2}$ (ca. 1.2 equiv), N-methylephedrine (ca. 1.2 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (ca. 1.2 equiv), aldehyde (1 equiv); ca. 0.5 mmol scale, PhMe (1 mL). ${ }^{b}$ Ligand ($1 R, 2 S$)-(-)- or ($1 S, 2 R$)-(+)-N-methylephedrine. ${ }^{c}$ Absolute stereochemistry established by Mosher ester method. ${ }^{d}$ Isolated yields. ${ }^{e}$ Enantioselectivity calculated via HPLC analysis. ${ }^{f}$ Enantioselectivity calculated via the modified Mosher method.

Table 2. Results toward Optimizing Reaction Time ${ }^{a}$

		$=\mathrm{H}$	$\mathrm{Et}_{3} \mathrm{~N}$ phedrine		 13		
entry	$\mathrm{Zn}(\mathrm{OTf})_{2}$, equiv	ligand ${ }^{\text {b }}$	temp/ ${ }^{\circ} \mathrm{C}$	time/h	product ${ }^{c}$	yield, ${ }^{d} \%$	$\% \mathrm{ee}{ }^{e}$
1	1.2	$(1 R, 2 S)$	rt	72	(S)-(+)-13	89	95
2	1.6	$(1 R, 2 S)$	rt	37	(S)-(+)-13	82	94
3	2.2	$(1 S, 2 R)$	rt	36	$(R)-(-)-13$	83	94
4	2.1	$(1 S, 2 R)$	37	48	(R)-(-)-13	79	93
5	1.6	$(1 S, 2 R)$	40	13	$(R)-(-)-13$	89	92
6	1.6	(1S,2R)	50	14	$(R)-(-)-13$	89	73
7	1.6	(1S,2R)	60	3	$(R)-(-)-13$	88	58
8	1.6	(1S,2R)	80	2.5	(R)-(-)-13	89	53

${ }^{a}$ Reaction conditions: Alkyne (1.2 equiv), N-methylephedrine (ca. 1.2 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (ca. 1.2 equiv), isobutyraldehyde (1 equiv); ca. 0.5 mmol scale, $\mathrm{PhMe}(1 \mathrm{~mL}) .{ }^{b}$ Ligand $(1 R, 2 S)-(-)$ - or $(1 S, 2 R)-(+)-N$-methylephedrine. ${ }^{c}$ Absolute stereochemistry established by Mosher ester method. ${ }^{d}$ Isolated yields. ${ }^{e}$ Enantioselectivity calculated via HPLC analysis.

Table 3. Substrate Scope for Diyne Addition to α-Branched Aldehydes ${ }^{a}$

diyne	R	ligand ${ }^{\text {b }}$	R^{\prime}	product ${ }^{\text {c }}$	yield, ${ }^{d}$ \%	\% ee
11b	Ph	$(1 S, 2 R)$	$i-\mathrm{Pr}$	$(R)-(-)-14$	88	$92^{\text {e }}$
11c	4 -n-octylO-C6 H_{4}	$(1 R, 2 S)$	$c-\mathrm{C}_{6} \mathrm{H}_{12}$	(S)-(+)-15	82	97^{f}
11d	$4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{4}$	$(1 R, 2 S)$	$i-\mathrm{Pr}$	(S)-(+)-16	93	98^{e}
11e	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3}$	$(1 S, 2 R)$	$i-\operatorname{Pr}$	$(R)-(-)-17$	43	88^{f}
11f	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5}$	$(1 R, 2 S)$	$i-\mathrm{Pr}$	(S)-(+)-18	65	93^{f}
11 g	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6}$	$(1 R, 2 S)$	$i-\mathrm{Pr}$	(S)-(+)-19	77	90^{f}
11h	$i-\mathrm{Pr}_{3} \mathrm{Si}$	$(1 R, 2 S)$	$i-\mathrm{Pr}$	(S)-(+)-20	89	91^{e}

${ }^{a}$ Reaction conditions: Alkyne (1.2 equiv), $\mathrm{Zn}(\mathrm{OTf})_{2}$ (ca. 1.6 equiv), N-methylephedrine (ca. 1.2 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (ca. 1.2 equiv), aldehyde (1.0 equiv); ca. 0.5 mmol scale, $\mathrm{PhMe}(1 \mathrm{~mL}) .{ }^{b}$ Ligand ($1 R, 2 S$)-(-)- or ($1 S, 2 R$)-(+)-N-methylephedrine. ${ }^{c}$ Absolute stereochemistry established by Mosher ester method. ${ }^{d}$ Isolated yields. ${ }^{e}$ Enantioselectivity calculated via HPLC analysis. ${ }^{f}$ Enantioselectivity calculated via the modified Mosher method.

Figure 2. ORTEP drawing of 16 (20\% probability level).
helped increase the rate of the reaction, but had no effect toward increasing enantioselectivities, it was ultimately decided to vary the diynes while continuing to perform these reactions at room temperature.

The scope of the reaction was then explored using diynes $\mathbf{1 1 b} \mathbf{-} \mathbf{h}$ in reactions with α-branched aldehydes cyclohexanecarboxaldehyde and isobutyraldehyde. Enantioselectivities ranging from 88% to 98% ee, in typically respectable yields were obtained (Table 3). Arylbutadiynes $\mathbf{1 1 b} \mathbf{- d}$ reacted with aldehydes to give products $14-16$ in excellent yield, and in good (92\%) to excellent (98\%) ee. Alkyl-substituted diynes also worked well, giving propargylic alcohols 17-19 with 88-93\% ee and increasing yields as a function of length of the alkyl chain. The observed increase in yield is likely related to the stability of the terminal diynes during the desilylation step, i.e., the longer the alkyl chain the greater the stability of the terminal polyyne. Finally, the reaction of the triisopropylsilyl diyne 11 h with isobutyraldehyde gave 20 in 89% yield and 91% ee. Given the ability to remove the $i-\mathrm{Pr}_{3} \mathrm{Si}$-group of $\mathbf{2 0}$ with a fluoride source, compound $\mathbf{2 0}$ offers a potential building block for other chiral derivatives (vide infra).

Crystals of $\mathbf{1 6}$ suitable for X-ray diffraction have been obtained from a concentrated solution of diethyl ether at room temperature (Figure 2) and offer a chance to explore structure and, potentially, stereochemistry at C3. Crystallographic analysis shows that bond angles and lengths for $\mathbf{1 6}$ are unremarkable. While the structure suggests an (S)-configuration at C3, the obtained Flack parameter was not sufficient to assign reliably the absolute stereochemistry. ${ }^{25}$ Formation of $(S)-\mathbf{1 6}$ is, however, expected when using ($1 R, 2 S$)(-)- N -methylephedrine based on literature reports. ${ }^{26}$ Furthermore, the stereochemistry at C3 was confirmed experimentally by synthesis of both the (R) - and (S)-Mosher esters of $\mathbf{1 6}$ and analysis of their ${ }^{1} \mathrm{H}$ NMR spectra (see Supporting Information). Likewise, Mosher ester formation and product analysis by ${ }^{1} \mathrm{H}$ NMR spectroscopy was used to confirm the stereochemistry for other alcohols formed in this study (see Supporting Information).

Encouraging results with the asymmetric addition of diynes to aldehydes led to the examination of reactions with triynes. Due to the intrinsic instability typically observed for terminal triynes (even in solution), however, their use as starting materials is more challenging than the corresponding diynes. ${ }^{27}$ Nevertheless, these examples establish the viability of this route. The reaction of triyne 12a with isobutyraldehyde and cyclohexanecarboxaldehyde gave products 21 and 22 with similar enantioselectivities (Table 4). The yield of 22 was, however, lower as observed in the analogous reaction of diyne 11a with cyclohexanecarboxaldehyde. The reaction of $1,3,5$-icosatriyne $\mathbf{1 2 b}$ with isobutyraldehyde gave 23 in a good yield (80\%) and enantioselectivity (89% ee), and the triisopropylsilyl-terminated triyne 12c gave 24 in comparable yield.

Unfortunately, the enantiomers of 24 were inseparable by xHPLC, and attempted Mosher ester formation was not efficient;

Table 4. Substrate Scope for Triyne Addition to α-Branched Aldehydes ${ }^{a}$

triyne	R	ligand ${ }^{\text {b }}$	R^{\prime}	product ${ }^{\text {c }}$	yield, ${ }^{d}$ \%	\% ee
12a	$4-t$ - $\mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{4}$	$(1 R, 2 S)$	$i-\mathrm{Pr}$	(S)-(+)-21	69	89^{e}
12a	$4-t-\mathrm{Bu}-\mathrm{C}_{6} \mathrm{H}_{4}$	$(1 R, 2 S)$	$c-\mathrm{C}_{6} \mathrm{H}_{12}$	(S)-(+)-22	36	90^{e}
12b	$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{13}$	$(1 S, 2 R)$	$i-\mathrm{Pr}$	(R)-(-)-23	80	89^{e}
12c	$i-\mathrm{Pr}_{3} \mathrm{Si}$	$(1 S, 2 R)$	$i-\mathrm{Pr}$	(R)-(-)-24	78	94^{f}
12c	$i-\mathrm{Pr}_{3} \mathrm{Si}$	(1R,2S)	$i-\mathrm{Pr}$	(S)-(+)-24	81	98^{f}

${ }^{a}$ Reaction conditions: Alkyne (1.2 equiv), $\mathrm{Zn}(\mathrm{OTf})_{2}$ (ca. 1.6 equiv), N-methylephedrine (ca. 1.2 equiv), $\mathrm{Et}_{3} \mathrm{~N}$ (ca. 1.2 equiv), aldehyde (1.0 equiv); ca. 0.5 mmol scale, $\mathrm{PhMe}(1 \mathrm{~mL}) .{ }^{b}$ Ligand $(1 R, 2 S)-(-)-$ or ($1 S, 2 R$)-(+)-N-methylephedrine. ${ }^{c}$ Absolute stereochemistry established by Mosher ester method. ${ }^{d}$ Isolated yields. ${ }^{e}$ Enantioselectivity calculated via the modified Mosher method. ${ }^{f}$ Enantioselectivity based on derivatization; see Scheme 3.

Scheme 3. ${ }^{a}$ Triazole Formation Using Diyne 20 and Triyne 24

thus, the enantiomeric excess could not be established directly for 24. As with diyne 20, triyne 24 is also a masked terminal acetylene, which allows for further functionalization. To establish this possibility, the triisopropylsilyl-group of $(S)-(+)-20$ (91% ee) was removed using TBAF, and, after aqueous workup, the resulting terminal diyne was trapped with benzyl azide ${ }^{28}$ via a CuAAC reaction ${ }^{29}$ to give the 1,4-disubstituted 1,2,3-triazole product (S)-(-)-25a in a 51% yield and a 91% ee (Scheme 3). In an analogous reaction sequence, triyne (S)-(+)-24 gave $(S)-(-)-\mathbf{2 5 b}$ in a 65% yield and 98% ee, while $(R)-(-)-24$ gave $(R)-(+)-\mathbf{2 5 b}$ with similar results. This suggests that $(S)-(+)-$ and $(R)-(-)-24$ were formed initially with 98% and 94% ee, respectively, and that the removal of the silyl protecting group and further functionalization does not appear to impact enantiopurity.

As our work was nearing completion, a recent publication by Trost and co-workers appeared, ${ }^{19}$ which described rate enhancement and increased enantioselectivities using additives such as triphenylphosphine oxide, prompting us to explore such effects in our protocol. In comparison to our initial result (Table 5, entry 1), using triphenylphosphine oxide as an additive in the reaction of 11a with isobutyraldehyde gave a slight decrease in the reaction time, and the enantioselectivity also decreased slightly (Table 5 , entry 2).

When using acetylene as an alkyne source for asymmetric addition to aldehydes, Carreira reported the use of the slightly stronger Hunig's base ($i-\mathrm{Pr}_{2} \mathrm{NEt}$) in place of $\mathrm{Et}_{3} \mathrm{~N}^{30}$ In the present study, reaction times decreased somewhat with Hunig's base, while the enantioselectivity increased slightly (entry 3). When triphenylphosphine oxide was used in conjunction with

Table 5. The Effect of $\mathrm{PPh}_{3} \mathrm{O}$ Additive and Base on Formation of $(R)-(-)-13$ and -22^{a}

	$t-\mathrm{Bu}=1 \equiv]_{n}^{11 \mathbf{H} \quad \mathrm{H}=1} \begin{aligned} & 12 \mathbf{a} n=2 \end{aligned}$		phedrine	 (R)- (R)-		
entry	product	base	additive	time/h	yield, ${ }^{\text {b }}$ \%	$\% \mathrm{ee}{ }^{c}$
1	$(R)-(-)-13$	$\mathrm{Et}_{3} \mathrm{~N}$	-	36	83	94
2	$(R)-(-)-13$	$\mathrm{Et}_{3} \mathrm{~N}$	$\mathrm{PPh}_{3} \mathrm{O}$ (1 equiv)	20	79	88
3	$(R)-(-)-13$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	-	19	80	98
4	$(R)-(-)-13$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	$\mathrm{PPh}_{3} \mathrm{O}$ (1 equiv)	20	79	95
5	$(R)-(-)-13$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	$\mathrm{PPh}_{3} \mathrm{O}$ (0.2 equiv)	20	83	97
6	$(R)-(-)-13$	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	-	4^{d}	83	95
7	(R)-(-)-22	$i-\mathrm{Pr}_{2} \mathrm{NEt}$	-	30	52	94

${ }^{a}$ Reaction conditions: Alkyne (1.2 equiv), $\mathrm{Zn}(\mathrm{OTf})_{2}$ (ca. 1.6 equiv), ($1 S, 2 R$)-(+)- N-methylephedrine (ca. 1.2 equiv), base (ca. 1.2 equiv), aldehyde (1.0 equiv): ca. 0.5 mmol scale, $\mathrm{PhMe}(1 \mathrm{~mL})$, rt. ${ }^{b}$ Isolated yields. ${ }^{c}$ Enantioselectivity calculated via HPLC. ${ }^{d}$ Reaction was performed at $40{ }^{\circ} \mathrm{C}$.

Hünig's base, the enantioselectivity remained approximately constant (entries 4 and 5). With Hünig's base and heating to $40^{\circ} \mathrm{C}$, the reaction was complete in 4 h to give an 83% yield and a 95% ee (Table 5, entry 6). While these optimizations suggest a means to decrease the reaction time, yields and enantioselectivities remained more or less constant. As a final test, the reaction of $\mathbf{1 2 a}$ with cyclohexanecarboxaldehyde was examined, since this reaction was the most challenging of those attempted with triynes (see Table 4). The result was encouraging: the yield (from 36 to 52%) and enantioselectivity (from 90 to 94%) increased somewhat, while the reaction time decreased from 90 to 30 h .

■ CONCLUSIONS

In summary, the asymmetric addition of terminal diynes and triynes to aldehydes described herein provides a direct route to obtain optically active propargylic alcohols, often with good to excellent yields and enantioselectivities. This method works best with α-branched aldehydes, and it is thus complementary to the recently published Trost protocol. This study offers the first examples of asymmetric triyne addition to an aldehyde and establishes that the length of the polyyne has little effect on enantioselectivity, although yields do trend lower for triynes, which is likely a result of decreased stability of the terminal triyne precursor. Two factors, however, appear to offer a means to improve the success of asymmetric addition reactions of triynes to aldehydes: (1) the use of Hunig's base and (2) Trost conditions with the ProPhenol ligand. These protocols are now being examined.

■ EXPERIMENTAL SECTION

General Details. Procedures for the synthesis of compounds $9 \mathrm{a},{ }^{22 \mathrm{c}}$ $9 \mathbf{b}^{22 \mathrm{a}} 9 \mathrm{c},{ }^{31} 9 \mathrm{~d}^{22 \mathrm{c}} 9 \mathrm{e},{ }^{22 \mathrm{a}} 9 \mathrm{f}^{32} 9 \mathrm{~h},{ }^{28 \mathrm{~b}} 10 \mathrm{a},{ }^{22 \mathrm{c}}$ and $10 \mathrm{c}^{2 \mathrm{bb}}$ have been reported. All reactions were performed in standard, dry glassware under an inert atmosphere of N_{2}. Unless otherwise specified, reagents were purchased from commercial suppliers and used without further purification. PhMe was distilled from sodium/benzophenone ketyl, while hexanes and dichloromethane were distilled from CaH_{2} immediately prior to use. Anhydrous MgSO_{4} was used as the drying agent after aqueous workup. $\mathrm{Zn}(\mathrm{OTf})_{2}$ was dried in a Schlenk flask under vacuum
(ca. 1 mmHg) for at least 12 h , while heating to $100^{\circ} \mathrm{C}$ to remove water. Cyclohexanecarboxaldehyde and isobutyraldehyde were dried over CaSO_{4} and fractionally distilled directly before use. Pivalaldehyde and propionaldehyde were dried over CaCl_{2} and fractionally distilled directly before use. Evaporation and concentration in vacuo were done at $\mathrm{H}_{2} \mathrm{O}-$ aspirator pressure. Column chromatography: silica gel-60 (230-400 mesh). Thin layer chromatography (TLC): precoated plastic sheets covered with 0.2 mm silica gel with fluorescent indicator UV 254 nm ; visualization by UV light, KMnO_{4} or anisaldehyde stain. IR spectra (cm^{-1}, cast film or neat). ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{13} \mathrm{C}$ NMR: $300,400,500$, and 700 MHz instruments, at $27^{\circ} \mathrm{C}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \mathrm{CDCl}_{3},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}$, or $\mathrm{CD}_{3} \mathrm{CN}$; solvent peaks (5.32, 7.26, 2.05, and 1.96 ppm , respectively, for ${ }^{1} \mathrm{H} ; 53.8$, 77.0 , $206.26 / 29.84$, and $118.26 / 1.32 \mathrm{ppm}$, respectively, for ${ }^{13} \mathrm{C}$) as reference. Optical rotations were recorded on a polarimeter using the sodium D line (589 nm) with a cell length of 10.002 cm . For simplicity, the coupling constants of the aryl protons for para-substituted phenyl groups have been reported as pseudo first-order, even though they are second-order spin systems. For mass spectral analyses, low-resolution data is provided in cases when M^{+}is not the base peak; otherwise, only high-resolution data are provided. Optical purities of the products were measured by chiral HPLC using either a Chiralcel OD or Chiralpak AS column or by formation of the Mosher ester and subsequent ${ }^{1} \mathrm{H}$ or ${ }^{19} \mathrm{~F}$ NMR analysis of the product along (see Supporting Information for HPLC traces and spectra).

X-ray Crystallographic Data for 16. $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}, M_{\mathrm{w}}=228.28$; crystal dimensions $0.58 \times 0.53 \times 0.26 \mathrm{~mm}$; crystal system: orthorhombic; space group $P 2_{1} 2_{1} 2_{1}$ (No. 19); $a=5.08550(10) ~ \AA, b=9.6271(3) \AA$, $c=25.6576(7) \AA \AA ; V=1256.16(6) \AA^{3} ; Z=4 ; \rho_{\text {calcd }}=1.207 \mathrm{~g} \mathrm{~cm}^{-3}$; $\mu=0.079 \mathrm{~mm}^{-1} ; \lambda=0.71073 \AA$ A ; $T=-100^{\circ} \mathrm{C} ; 2 \theta_{\text {max }}=55.06^{\circ}$; total data collected $=11130 ; R_{1}=0.0312$ for 1683 observed reflections with $\left[F_{\mathrm{o}}{ }^{2} \geq 2 \sigma\left(F_{\mathrm{o}}^{2}\right)\right] ; w R_{2}=0.0872$ for 155 variables and all 1721 unique reflections; residual electron density $=0.199$ and -0.158 e \AA^{-3}. CCDC 818624.

General Procedure. Removal of Trimethylsilyl Groups. To the appropriate silyl-protected diyne or triyne (0.60 mmol) in a solution of wet $\mathrm{MeOH} / \mathrm{THF}(5 \mathrm{~mL}, 4: 1 \mathrm{v} / \mathrm{v})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(6 \mathrm{mg}, 0.04 \mathrm{mmol})$, and the mixture was stirred at rt until TLC analysis no longer showed the presence of the starting material, ca. $0.5-1.5 \mathrm{~h} . \mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$ and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ were added, the organic layer was separated, washed with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 30 \mathrm{~mL})$, dried over MgSO_{4}, and filtered, and the solvent volume was reduced in vacuo to ca. $5 \mathrm{~mL} . \mathrm{PhMe}(0.5 \mathrm{~mL})$ was added, and the remainder of the $\mathrm{Et}_{2} \mathrm{O}$ was then removed in vacuo (taking care not to reduce the solution to
dryness, which results in partial decomposition of the terminal polyyne). The terminal diyne/triyne in PhMe solvent was then used directly in the asymmetric addition reaction.

General Procedure. Asymmetric Diyne and Triyne Addition to Aldehydes. $\mathrm{Zn}(\mathrm{OTf})_{2}(0.90 \mathrm{mmol}, 1.6$ equiv) and N-methylephedrine ($0.65 \mathrm{mmol}, 1.2$ equiv) were charged under N_{2} for 10 min in a 10 mL round-bottom flask. $\mathrm{PhMe}(1 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(90 \mu \mathrm{~L}, 0.65 \mathrm{mmol}$, 1.2 equiv) were then added. The mixture was stirred for 2 h at rt , followed by the addition of the terminal diyne/triyne (0.60 mmol , 1.1 equiv) in $\mathrm{PhMe}(0.5 \mathrm{~mL})$. The flask containing the diyne was then washed with additional $\mathrm{PhMe}(0.5 \mathrm{~mL})$, which was added to the reaction flask. The reaction was stirred for 20 min , and freshly purified aldehyde ($0.55 \mathrm{mmol}, 1.0$ equiv) was added. The reaction was stirred at rt until deemed complete by TLC analysis. The reaction was quenched via the addition of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(30 \mathrm{~mL})$. The aqueous layer was further extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times$ 30 mL). The combined organic phase was dried over MgSO_{4} and filtered, and the solvent was removed in vacuo. Unless otherwise stated, column chromatography (silica gel, hexanes/EtOAc 5:1) afforded the product.

General Procedure. Synthesis of the Racemic Propargylic Alcohol Polyynes. Following the removal of the silyl protecting group as per the general procedure, the appropriate di- or triyne (1 equiv) in PhMe was combined with 50 mL of hexanes. The reaction was cooled to $-78^{\circ} \mathrm{C}$, and BuLi (2.5 M in hexanes, 1.2 equiv) was added. The reaction was stirred and then slowly warmed to $-20^{\circ} \mathrm{C}$ over 0.5 h . The solution was then cooled to $-78^{\circ} \mathrm{C}$ and the corresponding aldehyde (1 equiv) was added. The resulting reaction stirred while slowly warming to $0{ }^{\circ} \mathrm{C}$ over $1-2 \mathrm{~h}$, until judged complete by TLC analysis. The reaction was quenched via the addition of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The organic layer was washed with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 20 \mathrm{~mL})$, dried over MgSO_{4}, and filtered, and the solvent was removed in vacuo. Column chromatography (silica gel, hexanes/ EtOAc 10:1) gave the corresponding racemic diyne or triyne (30-90\% yield).

General Procedure. The Reaction of Di- and Triynes with Benzyl Azide. ${ }^{28}$. A mixture of the appropriate triisopropylsilyl-protected polyyne and TBAF (2.0 equiv) in THF (5 mL) was stirred at $0^{\circ} \mathrm{C}$ until TLC analysis showed complete conversion to the terminal alkyne. $\mathrm{Et}_{2} \mathrm{O}$ $(25 \mathrm{~mL})$ and saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ were added, and the organic phase was separated, washed with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(2 \times 10 \mathrm{~mL})$ and saturated aq $\mathrm{NaCl}(10 \mathrm{~mL})$, and then dried over MgSO_{4}. DMF (1 mL) was then added and the solution concentrated to $1-2 \mathrm{~mL}$ via rotary evaporation. To the mixture above was added DMF (10 mL), followed by benzyl azide (1.0 equiv based on the starting silylated polyyne), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{~g})$, ascorbic acid (0.1 g), and $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. This mixture was then stirred at rt until TLC analysis no longer showed the presence of the terminal alkyne. Saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ were added, and the organic phase was separated, washed with saturated aq $\mathrm{NaCl}(2 \times 10 \mathrm{~mL})$, and dried over MgSO_{4}. Purification via column chromatography gave the pure product.

General Procedure. Mosher Ester formation. ${ }^{33}$. The alcohol was added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ along with either the (R) - or (S)-Mosher acid chloride (1.5 equiv), DMAP (1.0 equiv), and NEt_{3} (5.0 equiv). When the reaction was judged to be complete by TLC analysis, diisopropylamine $(0.2 \mathrm{~mL})$ was added and the mixture passed through a $1-\mathrm{in}$. silica column (in a 9-in. pipet eluted with 30% EtOAc/hexanes). The mixture was analyzed by ${ }^{19} \mathrm{~F}$ and/or ${ }^{1} \mathrm{H}$ NMR spectroscopy to determine the diastereomeric ratio.
[3-(Dibromomethylene)-1-decynyl]trimethylsilane. Thionyl chloride ($17 \mathrm{~g}, 0.14 \mathrm{~mol}$) was added to octanoic acid $(2.50 \mathrm{~g}$, 17.5 mmol) in a dry flask protected from moisture with a drying tube containing CaCl_{2}, and the mixture was stirred at rt for 24 h . The excess thionyl chloride was removed in vacuo to provide the acid chloride.
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added, and the temperature of the solution was lowered to $0^{\circ} \mathrm{C}$. Bis(trimethylsilyl)acetylene ($3.00 \mathrm{~g}, 17.6 \mathrm{mmol}$) and $\mathrm{AlCl}_{3}(2.7 \mathrm{~g}, 20 \mathrm{mmol})$ were added, and the reaction mixture was warmed to rt over 3 h . The reaction was carefully quenched by the addition of the reaction mixture to $10 \% \mathrm{HCl}(50 \mathrm{~mL})$ in 10 g of ice. The organic layer was separated, washed with saturated aq $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and $\mathrm{NaCl}(50 \mathrm{~mL})$, and dried over MgSO_{4}, and the solvent was removed in vacuo. The crude ketone was carried on to the next step.
$\mathrm{CBr}_{4}(6.6 \mathrm{~g}, 20 \mathrm{mmol})$ and $\mathrm{PPh}_{3}(11 \mathrm{~g}, 42 \mathrm{mmol})$ were added to $\mathrm{CH}_{2} \mathrm{Cl}_{2}(125 \mathrm{~mL})$ and stirred for 5 min at rt . The crude ketone in 10 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was slowly added to the mixture over 10 min , and the progress of the reaction was then monitored by TLC analysis until the ketone was no longer observed (ca. 30 min). Solvent was reduced to ca. 10 mL , hexanes added (125 mL), the inhomogeneous mixture filtered through a silica gel plug with hexanes, and solvent removed in vacuo to yield the desired product (4.7 g , 71% over three steps) as a yellow oil. $R_{\mathrm{f}}=0.9$ (hexanes/EtOAc 10:1). IR (neat) 2958 (s), 2928 (s), 2858 (s), 2153 $(\mathrm{m}-\mathrm{w}), 1251(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.31(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$), 1.57 (quintet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.33-1.29(\mathrm{~m}, 8 \mathrm{H}), 0.9$ $(\mathrm{t}, \mathrm{J}=6.9,3 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 131.3$, 103.3, 102.9, 97.6, 36.9, 31.9, 29.2, 29.0, 27.6, 22.8, 14.3, -0.1. EIMS m / z $379.9\left(\mathrm{M}^{+}, 12\right)$, $137.0\left(\left[\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}\right]^{+}, 65\right) 73.0\left(\left[\mathrm{Me}_{3} \mathrm{Si}^{+}, 100\right)\right.$.

Trimethyl-1,3-undecadiynylsilane (9g). [3-(Dibromomethylene)-1-decynyl]trimethylsilane ($2.53 \mathrm{~g}, 6.64 \mathrm{mmol}$) was added to hexanes $(50 \mathrm{~mL})$ and cooled to $-78{ }^{\circ} \mathrm{C}$. BuLi (3.2 mL of 2.5 M BuLi in hexanes, $8.0 \mathrm{mmol}, 1.2$ equiv) was added and the reaction slowly warmed to $0^{\circ} \mathrm{C}$ over 1 h . The reaction was quenched via the addition of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The organic phase was then washed with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed in vacuo. The crude product was passed through a plug of silica gel, and column chromatography (silica gel, hexanes) gave 9 g ($1.3 \mathrm{~g}, 90 \%$) as a yellow oil. $R_{\mathrm{f}}=0.85$ ($10: 1$ hexanes/EtOAc). IR (neat) $2958(\mathrm{~s}), 2930(\mathrm{~s}), 2858(\mathrm{~m}), 2226(\mathrm{~m}), 2109(\mathrm{~m}), 1251(\mathrm{~m}), 845(\mathrm{~s}) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.52$ (app quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 8 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 88.6,83.1,80.4,65.6,31.8,29.0,28.9,28.3$, 22.8, 19.4, 14.2, -0.2. EIMS $m / z 220.2\left(\mathrm{M}^{+}, 1\right), 205.1$ ($\left[\mathrm{M}-\mathrm{Me}^{+}\right]^{+}, 100$). EI HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{Si}\left(\mathrm{M}^{+}\right) 220.1647$, found 220.1645 .
[5-(Dibromomethylene)-1,4-nonadecadiynyl]trimethylsilane. This compound was formed in the same manner as [3-(dibromomethylene)-1-decynyl]trimethylsilane above, using myristic acid and bis(trimethylsilyl)acetylene. $R_{\mathrm{f}}=0.83$ ($10: 1$ hexanes $/ \mathrm{EtOAc}$). IR (neat) 2957 (m), 2925 (s), 2854 (s), 2225 (w), 2156 (w) cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.33(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.72-1.57(\mathrm{~m}$, $4 \mathrm{H}), 1.54-1.10(\mathrm{~m}, 20 \mathrm{H}), 0.91-0.70(\mathrm{~m}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (500 MHz , acetone d_{6}) $\delta 115.4,108.5,102.5,101.5,99.6,78.2,32.7$, 28.8, 23.4, 19.9, 14.4, -0.4. EIMS $m / z 504.1\left(\mathrm{M}^{+}, 3\right), 502.1\left(\mathrm{M}^{+}, 5\right)$, $500.1\left(\mathrm{M}^{+}, 3\right), 73.0\left(\left[\mathrm{Me}_{3} \mathrm{Si}\right]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{38}{ }^{81} \mathrm{Br}_{2} \mathrm{Si}$ $\left(\mathrm{M}^{+}\right)$504.1069, found 504.1068. Calcd for $\mathrm{C}_{23} \mathrm{H}_{38}{ }^{79} \mathrm{Br}^{81} \mathrm{BrSi} 502.1089$, found 502.1090. Calcd for $\mathrm{C}_{23} \mathrm{H}_{38}{ }^{79} \mathrm{Br}_{2} \mathrm{Si} 500.1110$, found 500.1104 .

Trimethyl-1,3,5-eicosyltriynylsilane (10b). [5-(Dibromo-methylene)-xl,4-nonadecadiynyl]trimethylsilane ($0.83 \mathrm{~g}, 1.7 \mathrm{mmol}$) was added to hexanes $(50 \mathrm{~mL})$, cooled to $-78^{\circ} \mathrm{C}$. BuLi $(0.8 \mathrm{~mL}$ of 2.5 M BuLi in hexanes, $2.0 \mathrm{mmol}, 1.2$ equiv) was added and the reaction slowly warmed to $0^{\circ} \mathrm{C}$ over 1 h . The reaction was quenched via the addition of saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The organic phase was then washed with saturated aq $\mathrm{NH}_{4} \mathrm{Cl}(3 \times 20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed in vacuo. The crude product was passed through a plug of silica gel, and column chromatography (silica gel, hexanes) gave $\mathbf{1 0 b}(0.5 \mathrm{~g}, 88 \%)$ as a yellow-brown oil. $R_{\mathrm{f}}=0.85$ ($10: 1$ hexanes $/ \mathrm{EtOAc}$). IR (film cast, CHCl_{3}) 2957 (m), 2925 (s , 2854 (s$), 2212$ (m), 2167 (w), $2080(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 1.54 (quintet, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.22(\mathrm{~m}, 22 \mathrm{H}), 0.89(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$ $0.20(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 88.4,85.3,81.0,65.5,62.6$,
59.9, 31.9, 29.69, 29.66, 29.6, 29.44, 26.36, 29.0, 28.8, 28.0, 22.7, 19.4, 14.1, -0.5 (two signals coincident or not observed). EIMS $m / z 342.3\left(\mathrm{M}^{+}, 2\right)$, 327.2 ($[\mathrm{M}-\mathrm{Me}]^{+}$, 9), $73.0\left(\left[\mathrm{Me}_{3} \mathrm{Si}\right]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{Si}$ $\left(\mathrm{M}^{+}\right)$342.2743, found 342.2741.

Compound 13a (Table 1, entry 1). Compound 11a (130 mg, $0.70 \mathrm{mmol}, 1.2$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(254 \mathrm{mg}$, $0.699 \mathrm{mmol}, 1.2$ equiv), (-)- N -methylephedrine ($118 \mathrm{mg}, 0.658 \mathrm{mmol}$, 1.1 equiv), $\mathrm{Et}_{3} \mathrm{~N}(91 \mu \mathrm{~L}, 0.65 \mathrm{mmol}, 1.1$ equiv), and isobutyraldehyde $(55 \mu \mathrm{~L}, 43 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 72 h to yield (S)-(+)-13a (136 mg, 89\%) as a yellow semisolid. A 95% ee was determined by HPLC analysis (Chiralcel OD column, $1 \% i-\mathrm{PrOH}$ in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, column temperature $10^{\circ} \mathrm{C}$) $T_{\text {major }}=38.1 \mathrm{~min}, T_{\text {minor }}=41.7 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{22}=3.53^{\circ}$ ($c=1.00, \mathrm{CHCl}_{3}$).

The other enantiomer, $(R)-(-)-13 a$ (Table 1, entry 2), was synthesized from 11a ($109 \mathrm{mg}, 0.598 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Zn}(\mathrm{OTf})_{2}(390 \mathrm{mg}$, $1.1 \mathrm{mmol}, 2.2$ equiv), (+)- N -methylephedrine ($110 \mathrm{mg}, 0.61 \mathrm{mmol}$, 1.2 equiv), $\mathrm{Et}_{3} \mathrm{~N}(84 \mu \mathrm{~L}, 61 \mathrm{mg}, 0.60 \mathrm{mmol}, 1.2$ equiv $)$, and isobutyraldehyde ($46 \mu \mathrm{~L}, 36 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 36 h to yield $(R)-(-)-13 \mathrm{a}(105 \mathrm{mg}, 83 \%)$ as a yellow semisolid in 94% ee. $[\alpha]_{\mathrm{D}}^{22}=-4.05^{\circ}\left(c=1.12, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}=$ 0.33 (hexanes/EtOAc 5:1). IR (film cast, CHCl_{3}): 3352 (m , broad), 3086 (w), 3038 (w), 2964 (s), 2905 (s), 2872 (s), 2239 (m), 1604 (w), $1024(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.95$ (app octet, $J=6.6$, $1 \mathrm{H}), 1.83(\mathrm{~d}, J=5.9,1 \mathrm{H}) 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.04$ $(\mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.7,132.3,125.4$, 118.4, 82.0, 78.6, 72.7, 70.4, 68.5, 34.9, 34.7, 31.1, 18.1, 17.5. EIMS m / z $254.2\left(\mathrm{M}^{+}, 38\right), 211.1\left([\mathrm{M}-i-\mathrm{Pr}]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}$ $\left(\mathrm{M}^{+}\right) 254.1671$, found 254.1671 .

Compound 13b (Table 1, entry 3). Compound 11a (158 mg, $0.867 \mathrm{mmol}, 1.2$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(371 \mathrm{mg}$, $1.02 \mathrm{mmol}, 1.4$ equiv), (-)- N-methylephedrine $(160 \mathrm{mg}, 0.89 \mathrm{mmol}$, 1.3 equiv), $\mathrm{Et}_{3} \mathrm{~N}(120 \mu \mathrm{~L}, 89 \mathrm{mg}, 0.88 \mathrm{mmol}, 1.3$ equiv $)$, and cyclohexanecarboxaldehyde ($85 \mu \mathrm{~L}, 79 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 80 h to yield (S)-(+)-13b ($150 \mathrm{mg}, 73 \%$) as a yellow oil. A 90% ee was determined by ${ }^{19}$ F NMR analysis of the corresponding ester derived from (S)-MTPA chloride (-72.92 ppm (major), -71.91 ppm (minor)). $[\alpha]_{\mathrm{D}}^{22}=11.82^{\circ}$ (c $\left.=1.00, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}=0.4\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexanes $\left.2: 1\right)$. IR (film cast, CHCl_{3}): 3346 (m, broad), 3086 (w), 3037 (w), 2928 (s), 2854 (s), 2236 (w), 1604 (w), 1503 (m), $1016(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=5.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.10(\mathrm{~d}, 4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.78(\mathrm{~m}, 2 \mathrm{H})$, $1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.09(\mathrm{~m}, 14 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.9,132.5,125.6,118.6,82.4,78.8,72.8,70.7,68.0,44.4$, 35.1, 31.2, 28.7, 28.3, 26.4, 25.82, 25.86. EIMS $m / z 294.2\left(\mathrm{M}^{+}, 21\right)$, $211.1\left(\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}\right)$ 294.1984, found 294.1985.

Compound 13c (Table 1, entry 4). Compound 11a (97 mg, $0.52 \mathrm{mmol}, 1.1$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(231 \mathrm{mg}, 0.635$ mmol, 1.3 equiv), (+)- N-methylephedrine ($122 \mathrm{mg}, 0.681 \mathrm{mmol}$, 1.4 equiv), $\mathrm{Et}_{3} \mathrm{~N}(83 \mu \mathrm{~L}, 60 \mathrm{mg}, 0.59 \mathrm{mmol}, 1.2$ equiv), and pivalaldehyde ($53 \mu \mathrm{~L}, 42 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 1 week to yield $(R)-(-)-13 \mathrm{c}(43 \mathrm{mg}, 33 \%)$ as a beige semisolid. An 90% ee was determined by HPLC analysis (Chiralcel OD column, $5 \% i-\mathrm{PrOH}$ in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, column temperature $\left.=25^{\circ} \mathrm{C}\right) T_{\text {major }}=11.4 \mathrm{~min}, T_{\text {minor }}=10.3 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{22}=$ $-5.23^{\circ}\left(c=0.39, \mathrm{CHCl}_{3}\right)$.

The other enantiomer, $(S)-(+)-13 c$ (Table 1, entry 5), was synthesized from 11a ($93 \mathrm{mg}, 0.51 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Zn}(\mathrm{OTf})_{2}(220 \mathrm{mg}$, $0.61 \mathrm{mmol}, 1.6$ equiv), (-)- N -methylephedrine ($86 \mathrm{mg}, 0.48 \mathrm{mmol}$, 1.2 equiv), $\mathrm{Et}_{3} \mathrm{~N}(66 \mu \mathrm{~L}, 48 \mathrm{mg}, 0.47 \mathrm{mmol}, 1.2$ equiv), and pivalaldehyde ($43 \mu \mathrm{~L}, 34 \mathrm{mg}, 0.39 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the
general procedure for 1 week to give $(S)-(+)-13 \mathrm{c}(38 \mathrm{mg}, 37 \%)$ as a beige semisolid in 90% ee. $[\alpha]_{\mathrm{D}}^{22}=3.90^{\circ}\left(c=0.21, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}=0.5$ (hexanes/EtOAc 5:1). IR (film cast, CHCl_{3}): 3398 (m, broad), 3037 (w), 2963 (s), 2930 (s), 2869 (m), 2244 (w) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7,132.3,125.5,118.4,82.0,78.5,72.7$, 72.0, 70.6, 36.4, 34.9, 31.1, 25.3. EIMS $m / z 268.2\left(\mathrm{M}^{+}, 20\right), 253.2([\mathrm{M}-$ $\left.\mathrm{Me}]^{+}, 15\right), 211.1\left([\mathrm{M}-t-\mathrm{Bu}]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}$ $\left(\mathrm{M}^{+}\right)$268.1827, found 268.1826.

Compound 13d (Table 1, entry 6). Compound 11a (181 mg, $0.993 \mathrm{mmol}, 1.3$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(430 \mathrm{mg}$, $1.2 \mathrm{mmol}, 1.5$ equiv), (-)- N-methylephedrine ($190 \mathrm{mg}, 1.1 \mathrm{mmol}$, 1.3 equiv), $\mathrm{Et}_{3} \mathrm{~N}(140 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 1.1$ equiv), and propionaldehyde $(57 \mu \mathrm{~L}, 46 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 68 h to give $(S)-(-)-13 \mathrm{~d}(86 \mathrm{mg}, 45 \%)$ as an off whiteyellow semisolid. A 64\% ee was determined by ${ }^{19}$ F NMR analysis of the corresponding ester derived from (R)-MTPA chloride $(-71.99 \mathrm{ppm}$ major), -72.31 ppm (minor)). $[\alpha]_{\mathrm{D}}^{22}=-0.99^{\circ}\left(c=0.24, \mathrm{CHCl}_{3}\right)$. $R_{\mathrm{f}}=0.6\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR (film cast, $\left.\mathrm{CHCl}_{3}\right): 3347$ (m, broad), $3086(\mathrm{w})$, 3038 (w), 2966 (s), 2906 (m), 2873 (m), 2239 (m), 1603 (w) cm^{-1}. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{dd}, J=12.2,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{~d}, J=5.8,1 \mathrm{H})$, $1.82-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta 152.8,132.3,125.5,118.4,82.8,78.8,72.6,69.8$, 64.3, 34.9, 31.1, 30.7, 9.4. EIMS $m / z 240.2\left(\mathrm{M}^{+}, 42\right)$, $225.1\left([\mathrm{M}-\mathrm{Me}]^{+}\right.$, 52), $211.1\left([\mathrm{M}-\mathrm{Et}]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}\left(\mathrm{M}^{+}\right)$ 240.1514, found 240.1516 .

Compound 14. Compound $11 \mathbf{b}$ ($88 \mathrm{mg}, 0.70 \mathrm{mmol}, 1.4$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(363 \mathrm{mg}, 1.00 \mathrm{mmol}, 2.0$ equiv), (+) -N methylephedrine ($134 \mathrm{mg}, 0.748 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(98 \mu \mathrm{~L}, 71 \mathrm{mg}$, $0.70 \mathrm{mmol}, 1.4$ equiv), and isobutyraldehyde ($46 \mu \mathrm{~L}, 36 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 48 h to yield $(R)-(-)-14(87 \mathrm{mg}, 88 \%)$ as a pale yellow semisolid. A 92% ee was determined by HPLC analysis (Chiralcel OD column, $50 \% i$-PrOH in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, column temperature $=25{ }^{\circ} \mathrm{C}$) $T_{\text {major }}=9.0 \mathrm{~min}, T_{\text {minor }}=9.8 \mathrm{~min} .[\alpha]_{\mathrm{D}}^{22}=-3.68^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$. $R_{\mathrm{f}}=0.3$ (hexanes/EtOAc 5:1). IR (film cast, CHCl_{3}): 3442 (s, broad), 3081 (w), 3064 (w), 2964 (s), 2930 (m), 2873 (m), 2242 (w), 1569 (w), $1025(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.49(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.30(\mathrm{~m}, 3 \mathrm{H}), 4.32(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96$ (app octet, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 132.7,129.4$, 128.6, 121.7, 82.5, 78.4, 73.4, 70.4, 68.7, 34.8, 18.2, 17.7. EIMS m / z $198.1\left(\mathrm{M}^{+}, 17\right), 155.0\left([\mathrm{M}-i-\mathrm{Pr}]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}$ $\left(\mathrm{M}^{+}\right)$198.1045, found 198.1045.

Compound 15 . Compound 11 c ($153 \mathrm{mg}, 0.601 \mathrm{mmol}, 1.2$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(298 \mathrm{mg}, 0.820 \mathrm{mmol}, 1.6$ equiv), (-) -N methylephedrine ($110 \mathrm{mg}, 0.63 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(84 \mu \mathrm{~L}, 61 \mathrm{mg}$, $0.60 \mathrm{mmol}, 1.2$ equiv), and cyclohexanecarboxaldehyde (56 mg , $0.50 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 74 h to yield $(S)-(+)-15(150 \mathrm{mg}, 82 \%)$ as a pale yellow semisolid. A 97% ee was determined by ${ }^{19}$ F NMR analysis of the corresponding ester derived from (R)-MTPA chloride (-71.89 ppm (major), -72.27 ppm minor)) $[\alpha]_{\mathrm{D}}^{22}=9.49^{\circ}\left(c=0.76, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}=0.2$ (hexanes/ EtOAc 10:1). IR (film cast, CHCl_{3}): 3372 (m), 2927 (s), 2854 (s), 2237 (m), 1603 (s), 1567 (w), 1509 (s), 1251 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.42(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.30(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{bd}, J=$ $12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 5 \mathrm{H}), 1.72-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.39-1.08(\mathrm{~m}, 14 \mathrm{H}), 0.90(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.2,134.3,114.8,113.3,82.2,78.9,72.2$, 70.8, 68.3, 68.0, 44.4, 31.9, 29.5, 29.4, 29.3, 28.7, 28.3, 26.4, 26.1, 26.01, 25.99, 22.8, 14.2. EIMS $m / z 366.3\left(\mathrm{M}^{+}, 34\right), 283.2$
([M - $\left.\left.\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}, 64\right), 55\left(\mathrm{C}_{4} \mathrm{H}_{7}^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{2}$ $\left(\mathrm{M}^{+}\right) 366.2559$, found 366.2566 .

Compound 16. Compound 11d ($132 \mathrm{mg}, 0.709 \mathrm{mmol}, 1.1$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(406 \mathrm{mg}, 1.12 \mathrm{mmol}, 1.7$ equiv), (-)- N methylephedrine ($129 \mathrm{mg}, 0.720 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(110 \mu \mathrm{~L}$, $77 \mathrm{mg}, 0.76 \mathrm{mmol}, 1.2$ equiv), and isobutyraldehyde ($59 \mu \mathrm{~L}, 47 \mathrm{mg}$, $0.65 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 48 h to yield (S)-(+)-16 ($138 \mathrm{mg}, 93 \%$) as a pale yellow semisolid. A 98% ee was determined by HPLC analysis (Chiralcel OD column, 5\% $i-\mathrm{PrOH}$ in hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, column temperature $=$ $\left.25^{\circ} \mathrm{C}\right) T_{\text {major }}=42.6 \mathrm{~min}, T_{\text {minor }}=49.4 \mathrm{~min} .[\alpha]^{22}{ }_{\mathrm{D}}=2.46^{\circ}(c=0.90$, CHCl_{3}). $R_{\mathrm{f}}=0.3$ (hexanes/EtOAc 5:1). IR (film cast, CHCl_{3}): 3386 (m, broad), 2963 (s$), 2933(\mathrm{~m}), 2873(\mathrm{~m}), 2839(\mathrm{~m}), 2237(\mathrm{~m}), 1604$ (s), 1567 (w), $1510(\mathrm{~s}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44$ $(\mathrm{d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 1.94$ (app octet, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.88(\mathrm{bs}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.4,134.2,114.1,113.4,81.8,78.5,72.1,70.5,68.6,55.3,34.8,18.1$, 17.6. EIMS $m / z 288.1\left(\mathrm{M}^{+}, 37\right), 185.1$ ($[\mathrm{M}-i-\mathrm{Pr}]^{+}, 100$). EI HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$228.1150, found 228.1153.

Compound 17. Compound 11e ($53 \mathrm{mg}, 0.50 \mathrm{mmol}, 1.3$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(348 \mathrm{mg}, 0.957 \mathrm{mmol}, 2.5$ equiv), (+)-Nmethylephedrine ($132 \mathrm{mg}, 0.736 \mathrm{mmol}, 1.9$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(98 \mu \mathrm{~L}, 71 \mathrm{mg}$, $0.70 \mathrm{mmol}, 1.8$ equiv), and isobutyraldehyde ($35 \mu \mathrm{~L}, 28 \mathrm{mg}, 0.39 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 60 h to yield (R)-(-)-17 ($30 \mathrm{mg}, 43 \%$) as a yellow oil. An 88% ee was determined by ${ }^{19}$ F NMR analysis of the corresponding ester derived from (R)-MTPA chloride (-72.34 ppm (major), -71.97 ppm (minor)). $[\alpha]^{22}{ }_{\mathrm{D}}=$ $-3.51^{\circ}\left(c=0.87, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}=0.4$ (hexanes/EtOAc 5:1). IR (film cast, $\left.\mathrm{CHCl}_{3}\right): 3354(\mathrm{~m}$, broad), $2961(\mathrm{~s}), 2934(\mathrm{~s}), 2874(\mathrm{~m}), 2254(\mathrm{~m})$, $1467(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.21(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{dt}, J=7.0,0.9,2 \mathrm{H}), 1.95-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.37(\mathrm{~m}, 4 \mathrm{H})$, $1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 81.4,75.3,70.6,68.3,64.4,34.6,30.2$, 21.9, 18.9, 18.0, 17.4, 13.2. EIMS $m / z 178.1\left(\mathrm{M}^{+}, 4\right), 149.1\left([\mathrm{M}-\mathrm{Et}]^{+}\right.$, 6), 135.1 ($[\mathrm{M}-i-\mathrm{Pr}]^{+}, 100$). EI HRMS calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}\left(\mathrm{M}^{+}\right)$ 178.1358, found 178.1362.

Compound 18. Compound 11 f ($92 \mathrm{mg}, 0.76 \mathrm{mmol}, 1.2$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}$ ($312 \mathrm{mg}, 0.858 \mathrm{mmol}, 1.3$ equiv), (-)- N methylephedrine ($125 \mathrm{mg}, 0.700 \mathrm{mmol}, 1.1$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(110 \mu \mathrm{~L}$, $77 \mathrm{mg}, 0.76 \mathrm{mmol}, 1.2$ equiv), and isobutyraldehyde ($59 \mu \mathrm{~L}, 47 \mathrm{mg}$, $0.65 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 60 h to yield (S)-(+)-18 ($87 \mathrm{mg}, 65 \%$) as a yellow liquid. An 93% ee was determined by ${ }^{19} \mathrm{~F}$ NMR analysis of the corresponding ester derived from (R)-MTPA chloride (-71.98 ppm (major), -72.35 ppm minor)). $[\alpha]^{22}{ }_{\mathrm{D}}=4.16^{\circ}\left(c=0.25, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}=0.4$ (hexanes $/ \mathrm{EtOAc}$ 5:1). IR (film cast, CHCl_{3}): 3361 (m, broad), 2960 (s), 2932 (s), 2872 (m), $2860(\mathrm{~m}), 2254(\mathrm{~m}) 1028(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 4.21(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{td}, J=7.1,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.89$ (app octet, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.53$ (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $1.42-1.24(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7, \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8, \mathrm{~Hz}, 3 \mathrm{H})$, $0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 81.5,75.3,70.6$, 68.4, 64.4, 34.7, 31.2, 28.5, 28.1, 22.5, 19.3, 18.0, 17.5, 14.0. EIMS m / z $206.2\left(\mathrm{M}^{+}, 2\right), 191.1\left([\mathrm{M}-\mathrm{Me}]^{+}, 4\right), 177.1\left([\mathrm{M}-\mathrm{Et}]^{+}, 6\right), 163.1$ ([M - i-Pr] $]^{+}, 100$). El HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right)$206.1671, found 206.1665.

Compound 19. Compound 11 g ($82 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.2$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(210 \mathrm{mg}, 0.58 \mathrm{mmol}, 1.3$ equiv), (-)- N methylephedrine ($112 \mathrm{mg}, 0.625 \mathrm{mmol}, 1.4$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(90 \mu \mathrm{~L}, 61 \mathrm{mg}$, $0.60 \mathrm{mmol}, 1.3$ equiv), and isobutyraldehyde ($41 \mu \mathrm{~L}, 32 \mathrm{mg}, 0.45 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 48 h to yield $(S)-(+)-19(76 \mathrm{mg}, 77 \%)$ as a yellow oil. A 90% ee was determined by ${ }^{19}$ F NMR analysis of the corresponding ester derived from (R)-MTPA chloride (-71.99 ppm (major), -72.36 ppm (minor)). $[\alpha]_{\mathrm{D}}^{22}=3.74^{\circ}$
($c=1.00, \mathrm{CHCl}_{3}$). $R_{\mathrm{f}}=0.3$ (hexanes/EtOAc 5:1). IR (film cast, CHCl_{3}): 3344 (m, broad), $2959(\mathrm{~s}), 2930(\mathrm{~s}), 2872(\mathrm{~m}), 2858(\mathrm{~m}), 2254(\mathrm{~m})$, $1028(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23(\mathrm{~d}, J=5.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.27(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.95-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.53$ (quintet, $J=7.3$, $2 \mathrm{H}), 1.41-1.26(\mathrm{~m}, 8 \mathrm{H}), 1.01(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.88(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 81.7,75.5$, 70.8, 68.5, 64.6, 34.8, 31.8, 29.0, 28.9, 28.3, 22.8, 19.4, 18.2, 17.6, 14.2. EIMS $m / z 220.2\left(\mathrm{M}^{+}, 1\right)$, 177.1 ($[\mathrm{M}-i-\mathrm{Pr}]^{+}, 100$). EI HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}\left(\mathrm{M}^{+}\right)$220.1827, found 220.1825 .

Compound 20. Compound 11 h ($105 \mathrm{mg}, 0.510 \mathrm{mmol}, 1.3$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(338 \mathrm{mg}, 0.930 \mathrm{mmol}, 2.4$ equiv $),(-)-\mathrm{N}-$ methylephedrine ($99 \mathrm{mg}, 0.55 \mathrm{mmol}, 1.4$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(77 \mu \mathrm{~L}, 56 \mathrm{mg}$, $0.55 \mathrm{mmol}, 1.4$ equiv), and isobutyraldehyde ($34 \mu \mathrm{~L}, 28 \mathrm{mg}, 0.38 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 40 h to yield (S)-(+)-20 ($95 \mathrm{mg}, 89 \%$) as a yellow oil. A 91% ee was determined by HPLC (Chiralpak AS column, $1 \% i$-PrOH in heptane, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=$ 254 nm , column temperature $\left.=2.5^{\circ} \mathrm{C}\right) T_{\text {minor }}=20.0 \mathrm{~min}, T_{\text {major }}=22.5$ $\min .[\alpha]^{22}{ }_{\mathrm{D}}=2.35^{\circ}\left(c=2.00, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}=0.5$ (hexanes/EtOAc 5:1). IR (film cast, CHCl_{3}): 3314 (m, broad), 2961 (s , 2945 (s), 2867 (s), 2219 (w), $2103(\mathrm{~m}), 1464(\mathrm{~m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $4.23(\mathrm{~d}, J=5.8,1 \mathrm{H}), 1.98$ (broad singlet, 1 H), 1.91 (app octet, $J=6.6$, $1 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8,3 \mathrm{H}) 1.01(\mathrm{~d}, J=6.9,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 88.9,84.4,76.5,70.9,68.3,34.6,18.5,18.0,17.6$, 11.2. EIMS $m / z 278.2$ ($\mathrm{M}^{+}, 9$), 235.2 ($[\mathrm{M}-i-\mathrm{Pr}]^{+}, 100$); EIHRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{OSi}\left(\mathrm{M}^{+}\right) 278.2066$, found 278.2065.

Compound 21. Compound 12 a ($32 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.1$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}\left(210 \mathrm{mg}, 0.59 \mathrm{mmol}, 4.9\right.$ equiv), ${ }^{34}(-)-\mathrm{N}-$ methylephedrine ($81 \mathrm{mg}, 0.45 \mathrm{mmol}, 3.8$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L}, 44 \mathrm{mg}$, $0.43 \mathrm{mmol}, 3.6$ equiv), and isobutyraldehyde ($11 \mu \mathrm{~L}, 8.7 \mathrm{mg}, 0.12 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 72 h to yield (S)-(+)-21 ($23 \mathrm{mg}, 69 \%$) as a beige semisolid. An 89% ee was determined by ${ }^{19} \mathrm{~F}$ NMR analysis of the corresponding ester derived from (R)-MTPA chloride (-71.92 ppm (major), -72.27 ppm minor) $) .[\alpha]^{22}{ }_{\mathrm{D}}=11.42^{\circ}\left(c=0.50, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}=0.5$ (hexanes $/ \mathrm{EtOAc}$ 5:1). IR (film cast, CHCl_{3}): 3359 (m, broad), 3086 (w), 3039 (w), 2964 (s), 2928 (s), 2872 (m), 2191 (m), 2103 (w), 1603 (w), 1503 (w), 1464 $(\mathrm{m}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ $(\mathrm{d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\operatorname{app}$ octet, $J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.81(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 9 \mathrm{H}), 1.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) 1.03$ $(\mathrm{d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.6,133.0,125.7$, 117.8, 79.9, 77.7, 73.8, 70.9, 68.6, 65.8, 63.6, 35.2, 34.9, 31.2, 18.2, 17.6. EIMS $m / z 278.2\left(\mathrm{M}^{+}, 26\right), 235.1\left([\mathrm{M}-i-\mathrm{Pr}]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}\left(\mathrm{M}^{+}\right)$278.1671, found 278.1674.

Compound 22. Compound 12 a ($82 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.2$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(182 \mathrm{mg}, 0.501 \mathrm{mmol}, 1.4$ equiv $),(-)-\mathrm{N}-$ methylephedrine ($81 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.3$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(65 \mu \mathrm{~L}, 45 \mathrm{mg}$, $0.45 \mathrm{mmol}, 1.3$ equiv), and cyclohexanecarboxaldehyde ($42 \mu \mathrm{~L}, 39 \mathrm{mg}$, $0.35 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 90 h to yield (S)-(+)-22(40 mg, 36\%) as a pale yellow oil. A 90% ee was determined by ${ }^{19} \mathrm{~F}$ NMR analysis of the corresponding ester derived from (S)-MTPA chloride (-72.26 ppm (major), -71.89 ppm (minor)). $[\alpha]_{\mathrm{D}}^{22}=7.56^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}=0.5$ (hexanes/EtOAc 5:1). IR (film cast, CHCl_{3}): 3351 (m, broad), 3086 (w), 3038 (w), 2929 (s), 2854 (s), 2189 (m), 2104 (w), 1603 (w), 1503 (w) cm ${ }^{-1} .{ }^{1}$ HNMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.27$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{bd}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.80-1.78(\mathrm{~m}, 3 \mathrm{H})$, $1.69(\mathrm{bd}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.05(\mathrm{~m}, 14 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.4,132.8,125.5,117.7,80.0$, $77.5,73.6,70.8,67.8,65.4,63.4,44.2,35.0,31.0,28.5,28.1,26.2$, 25.80, 25.77. EIMS $m / z 318.2\left(\mathrm{M}^{+}, 61\right)$, $303.2\left([\mathrm{M}-\mathrm{Me}]^{+}, 26\right), 235.1$ ($\left[\mathrm{M}-\mathrm{C}_{6} \mathrm{H}_{11}\right]^{+}, 100$). EI HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}\left(\mathrm{M}^{+}\right)$318.1984, found 318.1987.

Compound 22 with Hunig's Base (Table 5, entry 7). Compound 12a ($186 \mathrm{mg}, 0.90 \mathrm{mmol}, 1.2$ equiv) was combined with
$\mathrm{Zn}(\mathrm{OTf})_{2}(476 \mathrm{mg}, 1.31 \mathrm{mmol}, 1.4$ equiv), (+)- N -methylephedrine $\left(160 \mathrm{mg}, 0.89 \mathrm{mmol}, 1.1\right.$ equiv), $i-\operatorname{Pr}_{2} \mathrm{NEt}(171 \mu \mathrm{~L}, 127 \mathrm{mg}, 0.98 \mathrm{mmol}$, 1.2 equiv), and cyclohexanecarboxaldehyde ($99 \mu \mathrm{~L}, 92 \mathrm{mg}, 0.82 \mathrm{mmol}$, 1.0 equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 30 h to yield $(R)-(-)-22(136 \mathrm{mg}, 52 \%)$ as a pale yellow oil. A 94% ee was determined by ${ }^{19} \mathrm{~F}$ NMR analysis of the corresponding ester derived from (S)-MTPA chloride (-71.89 ppm (major), -72.26 ppm (minor)). $[\alpha]_{\mathrm{D}}^{22}=-7.76^{\circ}\left(c=1.73, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}=0.5$ (hexanes/EtOAc 5:1).

Compound 23. Compound $\mathbf{1 2 b}$ ($162 \mathrm{mg}, 0.600 \mathrm{mmol}, 1.2$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(254 \mathrm{mg}, 0.699 \mathrm{mmol}, 1.4$ equiv), (+)-Nmethylephedrine ($108 \mathrm{mg}, 0.602 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Et}_{3} \mathrm{~N}(85 \mu \mathrm{~L}, 62 \mathrm{mg}$, $0.61 \mathrm{mmol}, 1.2$ equiv), and isobutyraldehyde ($46 \mu \mathrm{~L}, 36 \mathrm{mg}, 0.50 \mathrm{mmol}$, 1.0 equiv) $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 61 h to yield $(R)-(-)-23(137 \mathrm{mg}, 80 \%)$ as a white semisolid that turned purple upon decomposition. A 89% ee was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the corresponding ester derived from (R)-MTPA chloride $(-71.95 \mathrm{ppm}$ minor), $-72.30 \mathrm{ppm}($ major $)) .[\alpha]_{\mathrm{D}}^{22}=-1.60^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right) \cdot R_{\mathrm{f}}=$ 0.2 (hexanes/EtOAc 10:1). IR (film cast, CHCl_{3}): 3344 (m , broad), 2959 (s), 2925 (s), 2854 (s), 2218 (m), 1467 (m) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, 1.91 (app octet, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.80($ broad singlet, 1 H$), 1.54$ (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.27(\mathrm{~m}, 22 \mathrm{H}), 1.01(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 0.89(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 81.3,70.8,68.4,65.4,64.0$, 59.0, 34.7, 31.9, 29.7, 29.65, 29.57, 29.49, 29.4, 29.0, 28.2, 28.0, 25.4, 22.7, 19.4, 18.0, 17.4, 14.1 (two signals coincident or not observed). EIMS $m / z 342.3\left(\mathrm{M}^{+}, 2\right), 327.3\left([\mathrm{M}-\mathrm{Me}]^{+}, 7\right), 299.2\left([\mathrm{M}-i-\mathrm{Pr}]^{+}\right.$, 100). EI HRMS calcd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{O}\left(\mathrm{M}^{+}\right) 342.2923$, found 342.2919 .

Compound (R)-(-)-24 (Table 4, entry 4). Compound 12c ($120 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.2$ equiv) was combined with $\mathrm{Zn}(\mathrm{OTf})_{2}(260 \mathrm{mg}$, $0.72 \mathrm{mmol}, 1.6$ equiv), (+)-N-methylephedrine ($108 \mathrm{mg}, 0.602 \mathrm{mmol}$, 1.3 equiv), $\mathrm{Et}_{3} \mathrm{~N}(80 \mu \mathrm{~L}, 0.57 \mathrm{mmol}, 1.3$ equiv), and isobutyraldehyde ($41 \mu \mathrm{~L}, 32 \mathrm{mg}, 0.45 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 35 h to yield $(R)-(-)-24(106 \mathrm{mg}, 78 \%)$ as a yellow semisolid. $[\alpha]^{22}{ }_{\mathrm{D}}=-2.64^{\circ}\left(c=1.00, \mathrm{CHCl}_{3}\right)$. Determination of enantiomeric excess by HPLC analysis and Mosher ester formation was unsuccessful.

The other enantiomer, $(S)-(+)-24$ (Table 4, entry 5), was synthesized from 12 c ($120 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.2$ equiv), $\mathrm{Zn}(\mathrm{OTf})_{2}(260 \mathrm{mg}$, $0.72 \mathrm{mmol}, 1.6$ equiv), (-)- N -methylephedrine $(101 \mathrm{mg}, 0.563 \mathrm{mmol}$, 1.3 equiv), $\mathrm{Et}_{3} \mathrm{~N}(38 \mu \mathrm{~L}, 53 \mathrm{mg}, 0.52 \mathrm{mmol}, 1.2$ equiv), and isobutyraldehyde ($40 \mu \mathrm{~L}, 31 \mathrm{mg}, 0.44 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{PhMe}(1 \mathrm{~mL})$ as per the general procedure for 36 h to yield $(S)-(+)-24(108 \mathrm{mg}, 81 \%)$ as a yellow semisolid. Determination of enantiomeric excess by HPLC analysis and Mosher ester formation was unsuccessful.

Data for $(S)-(+)-24:[\alpha]_{\mathrm{D}}^{22}=1.86^{\circ}\left(c=0.29, \mathrm{CHCl}_{3}\right) . R_{\mathrm{f}}=0.4$ (hexanes/EtOAc 5:1). IR (film cast, CHCl_{3}): 3328 (m, broad), 2961 (s), 2945 (s), 2892 (m), 2867 (s), 2163 (w), 2077 (m), 1463 (m) cm ${ }^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98(\mathrm{~d}, J=3.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.91(\mathrm{app}$ octet, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H}), 1.00(\mathrm{dd}, J=6.8$, $8.5 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 89.5,85.3,77.9,70.5,68.3$, 63.9, 60.1, 34.7, 18.5, 18.0, 17.4, 11.2. EIMS $m / z 302.2\left(\mathrm{M}^{+}, 2\right), 259.2$ ($[\mathrm{M}-i-\mathrm{Pr}]^{+}, 100$). EI HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OSi}\left(\mathrm{M}^{+}\right)$302.2066, found 302.2057 .

Compound 25a. Compound (S)-(+)-20 (13 mg, 0.047 mmol$)$, benzyl azide ($6.0 \mathrm{mg}, 0.045 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$, ascorbic acid $(100 \mathrm{mg}, 0.6 \mathrm{mmol})$, and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were reacted in DMF (3 mL) as per the general procedure, and the reaction was quenched after 30 min . Column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $(S)-(-)-25 a(6.0 \mathrm{mg}, 51 \%)$ as a slightly off-white solid. $[\alpha]_{\mathrm{D}}^{22}=-1.68^{\circ}\left(c=0.500, \mathrm{CHCl}_{3}\right)$. A 91% ee was determined by HPLC analysis (Chiracel OD column, $10 \% i-\mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$, column temperature $\left.=25^{\circ} \mathrm{C}\right) T_{\text {minor }} 74.5 \mathrm{~min}$, $T_{\text {major }} 82.2 \mathrm{~min}$.

The racemic triazole rac-25a was synthesized from rac-20 $(3.0 \mathrm{mg}$, 0.011 mmol), benzyl azide ($3.0 \mathrm{mg}, 0.023 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
($100 \mathrm{mg}, 0.4 \mathrm{mmol}$), ascorbic acid ($100 \mathrm{mg}, 0.6 \mathrm{mmol}$), and $\mathrm{H}_{2} \mathrm{O}$ $(0.5 \mathrm{~mL})$ reacted in DMF (3 mL) via the general procedure, and the reaction was quenched after 30 min . Column chromatography (silica gel, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded rac-25a ($1.5 \mathrm{mg}, 53 \%$), which was used for determining HPLC conditions to calculate the enantiomeric excess.

Data for $(S)-(-)-25 a . R_{\mathrm{f}}=0.4$ (hexanes/EtOAc 1:1). IR (film cast, CHCl_{3}): 3362 (m, broad), 3140 (m), 3066 (w), 3034 (w), 2962 (s), 2927 (s), 2872 (s), 1458 (s), 1054 (s) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (700 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.52$ $(\mathrm{s}, 2 \mathrm{H}), 4.37(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-1.92(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(175 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.0$, 130.9, 129.2, 129.0, 128.1, 125.9, 92.7, 75.0, 68.3, 54.3, 34.4, 18.1, 17.6. EIMS $m / z 255.1\left(\mathrm{M}^{+}, 4\right), 237.1\left(\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 6\right), 212.1([\mathrm{M}-$ $\left.\left.\mathrm{CH}_{3} \mathrm{~N}_{2}\right]^{+}, 25\right)$, $184.1\left(\left[\mathrm{M}-i-\operatorname{Pr}-\mathrm{N}_{2}\right]^{+}, 37\right)$, $91.1\left(\left[\mathrm{C}_{7} \mathrm{H}_{7}\right]^{+}, 100\right)$. EI HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ 255.1372, found 255.1366.

Compound 25b. Compound $(S)-(+)-24(13 \mathrm{mg}, 0.043 \mathrm{mmol})$, benzyl azide ($5.7 \mathrm{mg}, 0.043 \mathrm{mmol}$), $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$, ascorbic acid ($100 \mathrm{mg}, 0.6 \mathrm{mmol}$), and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ were reacted in DMF $(3 \mathrm{~mL})$ as per the general procedure, and the reaction was quenched after 40 min . Column chromatography (silica gel, hexanes/EtOAc, 3:1) afforded $(S)-(-)-\mathbf{2 5 b}(7.8 \mathrm{mg}, 65 \%)$ as a yellow liquid. $[\alpha]_{\mathrm{D}}^{22}=-13.00^{\circ}(c=0.13$, CHCl_{3}). A 98% ee was determined by HPLC analysis (Chiralcel OD column, $40 \% i-\mathrm{PrOH} /$ hexanes, $0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254$, column temperature $=$ $\left.25^{\circ} \mathrm{C}\right) T_{\text {major }} 18.8 \mathrm{~min}, T_{\text {minor }} 21.4 \mathrm{~min}$ with $(S)-(-)$ - $25 \mathbf{b}$.

The other enantiomer $(R)-(+)-\mathbf{2 5 b}$ was synthesized from $(R)-(-)$ $24(13 \mathrm{mg}, 0.043 \mathrm{mmol})$, benzyl azide ($5.3 \mathrm{mg}, 0.040 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot$ $5 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg}, 0.4 \mathrm{mmol})$, ascorbic acid ($100 \mathrm{mg}, 0.6 \mathrm{mmol}$), and $\mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{~mL})$ in DMF $(3 \mathrm{~mL})$ as per the general procedure, and the reaction was quenched after 40 min . Column chromatography (silica gel, hexanes/EtOAc, 3:1) afforded (R)-(+)-25b (7.8 mg, 65\%) as a yellow liquid. $[\alpha]_{\mathrm{D}}^{22}=2.67^{\circ}\left(c=0.06, \mathrm{CHCl}_{3}\right)$. A 94% ee for $(R)-(+)-\mathbf{2 5 b}$ was determined using the conditions outlined above for $(S)-(-)-25 b$.

Data for $(R)-(+)-\mathbf{2 5 b}: R_{\mathrm{f}}=0.5$ (hexanes/EtOAc 1:1). IR (film cast, CHCl_{3}): 3362 (m, broad), 3141 (m), 3067 (w), 3034 (w), 2963 (s), 2930 (m), 2873 (m), 2243 (w), 1457 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.53$ (s, 2H), $4.30(\mathrm{~d}, J=5.6,1 \mathrm{H}), 1.93($ app octet, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75$ (broad singlet, 1 H), $1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($175 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 133.8,130.2,129.3,129.1,128.2,127.4$, 83.6, 76.9, 69.6, 68.4, 67.1, 54.4, 34.6, 18.0, 17.4. ESI HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right) 302.1264$, found 302.1262; calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{3} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$280.1444, found 280.1446.

ASSOCIATED CONTENT

(5) Supporting Information. Additional synthetic and spectroscopic data for optimization experiments, HPLC traces for determination of enantiomeric excess, NMR spectra for Mosher ester analysis, and crystallographic details. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: rik.tykwinski@chemie.uni-erlangen.de.

ACKNOWLEDGMENT

This work has been generously supported by the University of Alberta and the Natural Sciences and Engineering Research Council of Canada (NSERC) through the Discovery grant program.

- REFERENCES

(1) (a) Pan, Y.; Lowary, T. L.; Tykwinski, R. R. Can. J. Chem. 2009, 87, 1565-1582. (b) Gung, B. W. C. R. Chim. 2009, 12, 489-505. (c) Minto, R. E.; Blacklock, B. J. Prog. Lipid Res. 2008, 47, 233-306. (d) Shi Shun, A. L. K.; Tykwinski, R. R. Angew. Chem., Int. Ed. 2006, 45, 1034-1057. (e) Bohlmann, F.; Burkhardt, H.; Zdero, C. Naturally Occurring Acetylenes; Academic Press: New York, 1973.
(2) Dembitsky, V. M. Lipids 2006, 41, 883-924.
(3) Hansen, L.; Boll, P. M. Phytochemistry 1986, 25, 285-293.
(4) (a) Lechner, D.; Stavri, M.; Oluwatuyi, M.; Pereda-Miranda, R.; Gibbons, S. Phytochemistry 2004, 65, 331-335. (b) Matsunaga, H.; Saita, T.; Nagumo, F.; Mori, M.; Katano, M. Cancer Chemother. Pharmacol. 1995, 35, 291-296.
(5) Uwai, K.; Oshima, Y.; Sugihara, T.; Ohta, T. Tetrahedron 1999, 55, 9469-9480.
(6) Lewis, M. D.; Menes, R. Tetrahedron Lett. 1987, 28, 5129-5132.
(7) Wright, J. J.; Puar, M. S.; Pramanik, B.; Fishman, A. J. Chem. Soc., Chem. Commun. 1988, 413-414.
(8) Patel, M.; Conover, M.; Horan, A.; Loebenberg, D.; Marquez, J.; Mierzwa, R.; Paur, M. S.; Yarborough, R.; Waitz, J. A. J. Antibiot. 1988, 41, 794-797.
(9) For isolation, see: Marles, R. J.; Farnsworth, N. R.; Neill, D. A. J. Nat. Prod. 1989, 52, 261-266. For determination of absolute configuration, see: Rasmussen, H. B.; Christensen, S. B.; Kvist, L. P.; Kharazmi, A.; Huansi, A. G. J. Nat. Prod. 2000, 63, 1295-1296.
(10) Ito, A.; Cui, B. L.; Chavez, D.; Chai, H. B.; Shin, Y. G.; Kawanishi, K.; Kardono, L. B. S.; Riswan, S.; Farnsworth, N. R.; Cordell, G. A.; Pezzuto, J. M.; Kinghorn, A. D. J. Nat. Prod. 2001, 64, 246-248.
(11) Rashid, M. A.; Gustafson, K. R.; Cardellina, J. H., II; Boyd, M. R. Nat. Prod. Lett. 2001, 15, 21-26.
(12) (a) Rücker, G.; Kehrbaum, S.; Sakulas, H.; Lawong, B.; Goeltenboth, F. Planta Med. 1992, 58, 266-269. (b) Tobinaga, S.; Sharma, M. K.; Aalbersberg, W. G. L.; Watanabe, K.; Iguchi, K.; Narui, K.; Sasatsu, M.; Waki, S. Planta Med. 2009, 75, 624-628.
(13) For reviews, see: (a) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351, 963-983. (b) Pu, L. Tetrahedron 2003, 59, 9873-9886. (c) Cozzi, P. G.; Hilgraf, R.; Zimmerman, N. Eur. J. Org. Chem. 2004, 4095-4105.
(14) Ashwanden, P.; Carreira, E. M. Addition of Terminal Acetylides to $\mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{N}$ Electrophiles. In Acetylene Chemistry. Chemistry, Biology and Material Science; Diederich, F.; Stang, P. J.; Tykwinski, R. R., Eds.; Wiley-VCH: Weinheim, 2005; pp 101-138.
(15) (a) Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 1999, 121, 11245-11246. (b) Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806-1807. (c) Frantz, D. E.; Fässler, R.; Tomooka, C. S.; Carreira, E. M. Acc. Chem. Res. 2000, 33, 373-381.
(16) When non α - or β-branched aldehydes were used, the enantioselectivities were lower, $70-88 \%$ ee, see ref 15 b. When unsaturated aldehydes were used, a competing Cannizaro reaction resulted in lower than desirable yields, see ref 13a.
(17) (a) Chen, Z.; Xiong, W.; Jiang, B. Chem. Commun. 2002, 2098-2099. (b) Jiang, B.; Chen, Z.; Tang, X. Org. Lett. 2002, 4, 3451-3453. (c) Jiang, B.; Feng, Y. Tetrahedron Lett. 2002, 43, 2975-2977. (d) Jiang, B.; Si, Y.-G. Angew. Chem., Int. Ed. 2004, 43, 216-218. (e) Kamble, R. M.; Singh, V. K. Tetrahedron Lett. 2003, 44, 5347-5349.
(18) Prior to Trost's recent work in ref 19, only a single example of asymmetric addition of a diyne into an aldehyde had been reported, using Carreira's protocol toward the synthesis of the natural products strongylodiols A and B, see: Reber, S.; Knöpfel, T. F.; Carreira, E. M. Tetrahedron 2003, 59, 6813-6817.
(19) Trost, B.; Chan, V. S.; Yamamoto, D. J. Am. Chem. Soc. 2010, 132, 5186-5192.
(20) (a) Fritsch, P. Liebigs Ann. Chem. 1894, 279, 319-323. (b) Buttenberg, W. P. Liebigs Ann. Chem. 1894, 279, 324-337. (c) Wiechell, H. Liebigs Ann. Chem. 1894, 279, 337-344.
(21) For reviews, see: (a) Jahnke, E.; Tykwinski, R. R. Chem. Commun. 2010, 46, 3235-3249. (b) Chalifoux, W. A.; Tykwinski, R. R. Chem. Rec. 2006, 6, 169-182. (c) Knorr, R. Chem. Rev. 2004, 104, 3795-3849. (d) Stang, P. J. Chem. Rev. 1978, 78, 383-405.
(22) For examples, see: (a) Bichler, P.; Chalifoux, W. A.; Eisler, S.; Shi Shun, A. L. K.; Chernick, E. T.; Tykwinski, R. R. Org. Lett. 2009, 11, 519-522. (b) Eisler, S.; Chahal, N.; McDonald, R.; Tykwinski, R. R. Chem.-Eur. J. 2003, 9, 2542-2550. (c) Shi Shun, A. L. K.; Chernick, E. T.; Eisler, S.; Tykwinski, R. R. J. Org. Chem. 2003, 68, 1339-1347. (d) Shi Shun, A. L. K.; Tykwinski, R. R. J. Org. Chem. 2003, 68, 6810-6813. (e) Eisler, S.; Tykwinski, R. R. J. Am. Chem. Soc. 2000, 122, 10736-10737.
(23) Walton, D. R. M.; Waugh, F. J. Organomet. Chem. 1972, 37, 45-56.
(24) Ramirez, F.; Desai, N. B.; McKelvie, N. J. Am. Chem. Soc. 1962, 84, 1745-1747.
(25) The Flack parameter value obtained was $-0.1(9)$; see Supporting Information.
(26) See, for example, ref 18.
(27) Luu, T.; Tykwinski, R. R. J. Org. Chem. 2006, 71, 8982-8985.
(28) For the trapping of polyynes with benzyl azide via CuAAC, see: (a) Luu, T.; Medeos, B.; Graham, E.; Vallee, D.; McDonald, R.; Ferguson, M. J.; Tykwinski, R. R. J. Org. Chem. 2010, 75, 8498-8507. (b) Luu, T.; McDonald, R.; Tykwinski, R. R. Org. Lett. 2006, 8, 6035-6038.
(29) For selected reviews, see: (a) Huisgen, R. In 1,3-Dipolar Cycloaddition Chemistry; Padwa, A., Ed.; Wiley: New York, 1984; pp 1-176. (b) Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302-1315. (c) Amblard, F.; Cho, J. H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207-4220. (d) Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952-3015.
(30) Sasaki, H.; Boyall, D.; Carreira, E. M. Helv. Chim. Acta 2001, 84, 964-971.
(31) Made from the dibromoolefin (ref 28a) as per the general procedure reported in ref 22c.
(32) (a) Jiang, H.-F.; Wang, A.-Z. Synthesis 2007, 1649-1654. (b) Dabdoub, M. J.; Dabdoub, V. B.; Lenardão, E. J. Tetrahedron Lett. 2001, 42, 1807-1809.
(33) (a) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543-2549. (b) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512-519. (c) Sullivan, G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 33, 2143-2147.
(34) An excess of reagents were inadvertently used in this case, discovered only after the conclusion of the project.

[^0]: Received: April 29, 2011
 Published: July 12, 2011

